
Three Reasons to Consider Solid-State
Switching in Your Data Acquisition
System
––
WHITE PAPER

http://www.tek.com
http://www.tek.com/keithley

Introduction
Electromechanical (EM) relays are the most common type

of switch used in multiplexing modules that connect to

devices-under-test (DUTs) or sensors in multi-channel data

acquisition (DAQ) systems. These relays facilitate the signal

routing and measurement process. Although EM relays are

quite satisfactory and cost-effective for most situations, they

have some limitations in others. This article addresses the

three most common situations where using a multiplexing or

switching module with solid-state relays provides a better fit

for the application.

Longer Switch Contact Life
DAQ systems are often employed in applications that involve

monitoring multiple electrical characteristics (such as

temperature, DC voltage, resistance, etc.) for a long time –

days, weeks, months, or more. DAQ systems are also used in

production testing that involves switching. EM relay contact

life is generally in the tens of millions of cycles or more, but

this must be de-rated in some applications. For example, the

specifications for the Keithley 7700 20-Channel Differential

Multiplexer Module (used with the DAQ6510 Data Acquisition

and Logging Multimeter System) indicate users can expect

the EM relays to last for at least 100 million cycles in no-load

conditions. Operating using maximum signal levels drops

the specification to at least 100 thousand cycles – a 1000×

decrease. However, the specifications for the Keithley 7710

20-Channel Solid-State Differential Multiplexer Module (also

compatible with the DAQ6510) indicate that the solid-state

relays can sustain at least 10 billion cycles at the maximum

signal level. Therefore, a solid-state relay has a life at least

100 times longer than an electromechanical relay under no-

load switching conditions and 100,000 times longer under

full-load switching conditions. For applications with high

switching requirements, solid-state relay multiplexer modules

can reduce downtime involved in replacing worn-out EM

multiplexer modules and save on multiplexer replacement

costs over the life of the test system.

Higher Speed Switching
The 7710 and 3724 (Dual 1×30 FET Multiplexer Card

used with the 3706A System Switch/Multimeter) solid-

state modules can scan faster than the 7700 20-Channel

Multiplexer and the 3720 Dual 1×30 Channel Multiplexer

(also used with the 3706A) EM relay cards because they

have a shorter switch actuation time. Solid-state cards

offer switching rates 5–10× faster than electromechanical

switching modules. Appendices A and B provide example

code that shows how to set up scans and compute switching

times. Using the code provided in Appendix A, the DAQ6510

achieved an 800 channels/second scan rate with the solid-

state card but just 80 channels/second using the EM card.

Using the example code in Appendix B, the 3706A achieved a

1600 channels/second scan rate with the solid-state card but

just 120 channels/second using the EM card.

Contact Contamination Avoidance
An electromechanical relay (Figure 1) contains physical

switch contacts that are magnetically actuated to open or

close. Over time, the switch contacts can develop a residue

buildup (especially when routing lower-level signals) that

causes the switch not to make good contact or significantly

increases contact resistance, even with the strong magnetic

force involved in the actuation. When working with higher

energy signal levels, the voltage or current can help to clean

the buildup from the contact points; however, this contributes

to the lower contact switching life mentioned previously.

Relay

Control Signal

Figure 1. Simple electromechanical relay.

2 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

In contrast, a solid-state relay (Figure 2) is typically

composed of a field effect transistor (FET) configuration,

which lacks a mechanical switch that would be subject to

contamination or other types of material failure.

Figure 2. Simple solid-state relay.

Limitations of Solid-State Switching
It would seem obvious that a solid-state switching module

would always be preferred over an EM switching module.

However, solid-state switching modules have limitations on

the capacity of the solid-state switches. For example, the

maximum signal levels for the 7710 solid-state multiplexer

module is 60 VDC or 42 Vrms and 100 mA. The maximum

capacity for a typical EM card is 300 VDC or 300 Vrms and

1 A. EM relay modules can switch signals with a wider range

of voltages and currents. Solid-state cards can have lower

channel isolation, given that solid-state devices such as

FETs can have small off-state leakage currents. Solid-state

switches also have a higher contact resistance. This can be a

limitation when testing low-value resistance elements. Finally,

solid-state switching modules cost more than equivalent EM

switch modules. Although solid-state switches provide faster

switching and longer life, other factors must be considered

before deciding on the type of switch to use.

Use Case Example – Fast Scanning
to Monitor the Turn-Off DC Current of
an Energy Storage System
Let us consider a scenario in which many supply voltages are

held up by an energy storage module (for instance, a buck

converter with a large capacitor) that, when the main power

is lost, will provide power for approximately 10 seconds

while the dependent system saves the contents of memory

to an on-board NAND Flash device. There are 0.1 Ω resistor

shunts used to determine the current draw on the inputs of

each supply module power rail (in this case, there are three)

and all supply module output voltages are being monitored.

When a power down (or loss) occurs, the DAQ6510 and 7710

multiplexer are triggered to scan at the fastest rate possible

to collect all the information for the 10-second period. A

design engineer will review the details to verify that as many

functions as possible are turned off to conserve the most

power by observing that the least amount of current is

drawn to conserve valuable energy. The designer must also

ensure that both the design's 10-year-lifetime requirement

and the memory transfer is achieved at both 0°C and 60°C

temperatures.

The test circuit in Figure 3 shows three different supplies

along with three independent circuit loads, which are

supported by large capacitances on the outputs of individual

supplies (instead of on the inputs). In this example, the

DAQ6510 is configured to scan DC voltage across each of

the three resistive loads, as well as the three 0.1 Ω shunt

resistors (which will allow computing the current). Another

measurement channel samples the temperature of the

surrounding environment.

WWW.TEK.COM | 3

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Main Power
Module

Supply 1

CH 104

CH 10110 kΩ

0.1 Ω

0.1 Ω

0.1 Ω

680 µF

Supply 2

CH 105

CH 1021 kΩ
13.8 mF

Supply 3

CH 106

CH 10310 kΩ
200 µF

Figure 3. Test circuit for monitoring the turn-off DC current of an energy storage system

The following test example can be used to analyze the

characteristics of devices after the removal of or loss of

power. This type of test analyzes a system's current or

voltage draw to determine the product's lifetime. It can help

determine how a system responds to power loss along with

the preservation of memory within the device.

1. Set the TERMINALS switch on the front of the
DAQ6510 to its REAR position.

2. Cycle the power on the DAQ6510.

3. Touch the Build Scan button.

4. Touch the + button to "Add a group of channels."

5. Select channels 101, 102, 103, 104, 105, and 106 in
the pop-up dialog provided, then touch OK.

6. Select DC Voltage as the measurement function.

7. In the settings tab, change the configuration
as follows:

 – Change the Range to 10 V.

 – Set Auto Delay to OFF.

 – Change the NPLC to 0.0005.

 – Set Auto Zero to OFF.

8. In the upper-left corner of the display, touch the
MENU button and choose Expand Group from the
list of options.

9. For channels 104 through 106, change the range
to 100 mV.

10. In the upper-left corner of the display, touch the
MENU button and choose Collapse Groups from
the list of options

11. Touch the + button to add another group
of channels.

12. Select channel 110, then touch OK.

13. Select Temperature as the measurement function.

14. In the Settings tab, change the channel 110
configuration as follows:

 – Set Open Lead Detector to OFF.

 – Set Auto Delay to OFF.

 – Change the NPLC to 0.0005.

 – Set Auto Zero to OFF.

4 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

15. Touch the Scan tab to configure the scan settings.
Note how the Scan Duration indicator reads
"< 1 second."

16. Touch the Scan Count button and change the
value to 1300, then touch OK. Note how the Scan
Duration indicator reads "~00:10" to indicate a
10-second run time.

17. Ensure that your test circuit items are powered on
and stable.

18. Touch the Start Scan button on the DAQ6510
display, then immediately power off your
main supply.

19. Touch the View Scan Status button. This should
show you the status of the scan and its progress
while running.

20. Upon scan completion, touch the Watch Channels
button, deselect channel 110, then choose channels
104, 105, and 106.

21. Press the MENU key.

22. Under Views, select Graph. Note that these are the
waveforms that provide the voltage drops across
the shunt resistors.

Figures 4 through 7 show individual views of the decaying

voltage across the shunts in the absence of the main supply.

All are unique due to the capacitance and load resistance

values at the output of each regulator device.

Figure 4. Plots of collective measurements across shunt resistors.

Figure 5. Plot of measurements acquired at the shunt monitored by CH104.

Figure 6. Plot of measurements acquired at the shunt monitored by CH105.

Figure 7. Plot of measurements acquired at the shunt monitored by CH106.

WWW.TEK.COM | 5

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

The same viewing capabilities are available for the voltage

drops across the loads (Figure 8), as well as the temperature

(not shown).

Figure 8. Collective plot of voltage drops across loads

The data can be exported in several different ways to allow

manipulating and analyzing the data using a PC, such as to

calculate the currents for each channel of interest. However,

this can be automated with a test program that performs all

of the steps in the test example. Appendices C and D provide

a test program and the underlying script that perform the

following:

• Establishes the scan setup as defined previously.

• Uses the DAQ6510 to issue control commands to the

2280S power supply over an Ethernet connection.

• Configures and turns on the 2280S power supply.

• Starts the scan.

• Turns off the 2280S power supply.

• Monitors scan completion.

• On the DAQ6510, computes the current for the three

channels connected to shunts, and creates new buffers

to store these values.

• Returns the voltage, current, or temperature data for

each channel.

Conclusion
The solid-state cards for both the DAQ6510 and 3706A clearly

show a significant speed advantage over the more commonly

used EM cards. With a speed difference of up to 10× that of

the EM cards, system operators can scan more channels and

devices in a given amount of time. When test speed, high

volume manufacturing, or long-term monitoring are required,

consider solid-state switching modules as long as the solid-

state card can handle the voltage and current levels involved.

6 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Appendix A: High-Speed Scanning with the DAQ6510 and7710 Multiplexer
The following example shows how to configure a DAQ6510 with a 7710 solid-state multiplexer to achieve channel scanning rates

of 800 channels per second. Comments in the code body and displayed in the program console detail the scan configuration

timing separate from the scan execution timing.

This code was generated using Python 3.7 and uses the PyVisa extension for communication between the instrument and the

controlling PC.

import visa
import struct
import math
import time

doDebug = 1
rm = 0
myDaq = 0
printCmds = 0

==
DEFINE FUNCTIONS BELOW...
==
def KEI_Connect(rsrcString, doIdQuery, doReset, doClear):
 myInstr = rm.open_resource(rsrcString)
 if doIdQuery == 1:
 print(KEI_Query(myInstr, "*IDN?"))
 if doReset == 1:
 KEI_Write(myInstr, "*RST")
 if doClear == 1:
 myInstr.clear()
 myInstr.timeout = 10000
 return myInstr

def KEI_Write(myInstr, cmd):
 if printCmds == 1:
 print(cmd)
 myInstr.write(cmd)
 return

def KEI_Query(myInstr, cmd):
 if printCmds == 1:
 print(cmd)
 return myInstr.query(cmd)

def KEI_Query_Binary_Values(myInstr, cmd):
 if printCmds == 1:
 print(cmd)
 return myInstr.query_binary_values(cmd, datatype = 'f', is_big_endian = False)

def KEI_Disconnect(myInstr):
 myInstr.close()
 return

#==
#
MAIN CODE STARTS HERE
#
#==
DAQ_Inst_1 = "USB0::0x05E6::0x6510::04340543::INSTR"
Instrument ID String examples...
LAN -> TCPIP0::134.63.71.209::inst0::INSTR
USB -> USB0::0x05E6::0x2450::01419962::INSTR
GPIB -> GPIB0::16::INSTR
Serial -> ASRL4::INSTR

WWW.TEK.COM | 7

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Capture the program start time...
t1 = time.time()

Opens the resource manager and sets it to variable rm then
connect to the DAQ6510
rm = visa.ResourceManager()
myDaq = KEI_Connect(DAQ_Inst_1, 1, 1, 1)

Reset and start from known conditions
KEI_Write(myDaq, "*RST")

Set up the reading buffer
KEI_Write(myDaq, "TRACe:MAKE 'mybuf', 1000")
KEI_Write(myDaq, "TRACe:CLEar 'mybuf'")
KEI_Write(myDaq, "FORM:ASC:PREC 0")

Configure the channel measurement settings to optimize for speed
a. Setting a fixed range
b. Disabling auto zero
c. Disabling auto delay
d. Turn line sync off
e. Disable filtering and limits
f. Decreasing the power line cycles (PLC) to the minimum
KEI_Write(myDaq, "SENS:FUNC 'VOLT', (@101:110)")
KEI_Write(myDaq, "SENS:VOLT:RANG 1, (@101:110)")
KEI_Write(myDaq, "SENS:VOLT:RANG:AUTO 0, (@101:110)")
KEI_Write(myDaq, "SENS:VOLT:AZER OFF, (@101:110)")
KEI_Write(myDaq, "DISP:VOLT:DIG 4, (@101:110)")
KEI_Write(myDaq, "SENS:VOLT:NPLC 0.0005, (@101:110)")
KEI_Write(myDaq, "SENS:VOLT:LINE:SYNC OFF, (@101:110)")
KEI_Write(myDaq, "CALC2:VOLT:LIM1:STAT OFF, (@101:110)")
KEI_Write(myDaq, "CALC2:VOLT:LIM2:STAT OFF, (@101:110)")

Configure the scanning attributes
KEI_Write(myDaq, "ROUT:SCAN:COUN:SCAN 100")
KEI_Write(myDaq, "ROUT:SCAN:BUFF 'mybuf'")
KEI_Write(myDaq, "ROUT:SCAN:INT 0.0")
KEI_Write(myDaq, "ROUT:SCAN:CRE (@101:110)")

Change to processing the screen
KEI_Write(myDaq, "DISP:SCR PROC")

Start the scan...
t2 = time.time() # Capture the time when the scan begins...
KEI_Write(myDaq, "INIT")

Check the state of the scan (via the trigger model), if running
or waiting, then continue to hold; if idle then exit the
loop and extract the data.
rcvBuffer = KEI_Query(myDaq, "TRIG:STAT?")
while (("RUNNING" in rcvBuffer) or ("WAITING" in rcvBuffer)):
 time.sleep(0.01)
 rcvBuffer = KEI_Query(myDaq, "TRIG:STAT?")
t3 = time.time() # Captured the time when the scan ends...

Change to HOME the screen
KEI_Write(myDaq, "DISP:SCR HOME")

Extract the data
print(KEI_Query(myDaq, "TRACe:DATA? 1, 1000, 'mybuf'"))

t4 = time.time() # Capture the time when the test is complete...

Terminate the instrument and resource sessions
KEI_Disconnect(myDaq)
rm.close

8 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Notify the user of completion and the data streaming rate achieved.
print("done\n")
print("Elapsed Total Test Time: {0:0.3f} s".format(t4-t1))
print("Elapsed Test Configuration Time: {0:0.3f} s".format(t2-t1))
print("Elapsed Scan Time: {0:0.3f} s".format(t3-t2))
print("Elapsed Data Extraction Time: {0:0.3f} s".format(t4-t3))
print("Calculated Scan Rate: {0:0.3f} chan/s".format(1000/(t3-t2)))
print("Calculated Scan Rate with Data Extraction: {0:0.3f} chan/s".format(1000/(t4-t2)))

input("\nPress Enter to continue...")
exit()

WWW.TEK.COM | 9

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Appendix B: High-Speed Scanning with the Series 3706A and
3724 Multiplexer
The following example shows how to configure a 3706A with a 3724 solid-state multiplexer to achieve channel scanning rates

in excess of 1000 channels per second. Comments in the code body and displayed in the program console detail the scan

configuration timing separate from the scan execution timing.

This code was generated using C# in Visual Studio 2017 and uses direct sockets communication between the instrument and

the controlling PC.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Net.Sockets;
using System.Diagnostics; // for timing tools
using System.IO;
using System.Threading; // for delay

namespace Series_3706A_Speed_Scanning
{
 class Program
 {
 static public bool echoCommands = true;

 static void Main(string[] args)
 {
 string ipAddress = "192.168.1.37";
 int portNum = 5025;
 TcpClient myClient = null;
 NetworkStream netStream = null;
 string rcvBuffer = "";
 Stopwatch myStpWtch = new Stopwatch();
 myStpWtch.Start();

 // Get the elapsed time as a TimeSpan value.
 TimeSpan ts = myStpWtch.Elapsed;
 string elapsedTime = "";
 int cardSlot = 1;
 String sndBuffer = "";

 InstConnect(ref myClient, ref netStream, ipAddress, portNum, true, false, ref
rcvBuffer);

 // Reset the instrument to the default settings and clear existing system errors...
 InstSend(netStream, "*rst");
 InstSend(netStream, "errorqueue.clear()");

 // Check the interlock state and reset any existing scan attributes...
 InstQuery(netStream, "print(slot[1].interlock.state)", 32, ref rcvBuffer);
 InstSend(netStream, "*cls");
 InstSend(netStream, "scan.reset()");

 // Build the script that will...
 // a. Configure the measurement channel attributes
 // b. Clear and size the scan buffer,
 // c. Establish the scan configuration
 // d. Execute the scan
 // e. Provide timers that allow us to monitor
 // i. Scan setup time
 // ii. Scan execution time
 InstSend(netStream, "loadscript SCAN_3724");
 InstSend(netStream, "timer.reset()");

10 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 sndBuffer = String.Format("if slot[{0}].interlock.override == 0 then slot[{1}].
interlock.override = 1 end", cardSlot, cardSlot);
 InstSend(netStream, sndBuffer);
 InstSend(netStream, "channel.open(\"allslots\")");
 InstSend(netStream, "dmm.reset('all')");
 InstSend(netStream, "dmm.func = dmm.DC_VOLTS");
 InstSend(netStream, "dmm.nplc = 0.0005");
 InstSend(netStream, "dmm.displaydigits = dmm.DIGITS_7_5");
 InstSend(netStream, "dmm.autorange = dmm.OFF");
 InstSend(netStream, "dmm.autodelay = dmm.OFF");
 InstSend(netStream, "dmm.autozero = dmm.OFF");
 InstSend(netStream, "dmm.limit[1].enable = dmm.OFF");
 InstSend(netStream, "dmm.limit[2].enable = dmm.OFF");
 InstSend(netStream, "format.data = format.SREAL"); // Use binary data transfer for
readings...
 InstSend(netStream, "dmm.range = 10");
 InstSend(netStream, "dmm.measurecount = 1");
 InstSend(netStream, "scan.scancount = 100"); // used to be measurecount
 InstSend(netStream, "dmm.linesync = dmm.OFF");
 InstSend(netStream, "dmm.configure.set('dcv')");
 InstSend(netStream, "scan_buf = dmm.makebuffer(1000)");
 InstSend(netStream, "channel.connectrule = channel.BREAK_BEFORE_MAKE");
 //InstSend(netStream, "dmm.measure()");

 sndBuffer = String.Format("dmm.setconfig('1001:1010','dcv') scan.
create('1001:1010')");
 InstSend(netStream, sndBuffer);
 InstSend(netStream, "timeLapseSetup = timer.measure.t()");

 InstSend(netStream, "timer.reset()");
 InstSend(netStream, "scan.execute(scan_buf)");
 InstSend(netStream, "timeLapse = timer.measure.t()");
 InstSend(netStream, "endscript");

 // Call the script (on the instrument) that executes the scanning...
 InstSend(netStream, "SCAN_3724()");
 //Extract all data...
 float[] fltData = new float[100];
 int start_index = 1;
 int end_index = 100;
 int chunk_size = 100;
 int mm = 0;
 for (int n = 0; n < 10; n++)
 {
 sndBuffer = String.Format("printbuffer({0}, {1}, scan_buf.readings)", start_
index, end_index);
 InstQuery_FloatData(netStream, sndBuffer, chunk_size, ref fltData); // scan_
buf.readings,
 start_index += chunk_size;
 end_index += chunk_size;
 for (int m = 0; m < fltData.Length; m++)
 {
 Console.Write("Rdg {0} = {1},\n", (mm++) + 1, fltData[m]);
 }
 }

 // To get channels per sec scan speed, must divide 30 (the # of chans in a scan) by
elapsed time
 InstSend(netStream, "format.data = format.ASCII");
 InstQuery(netStream, "print(timeLapseSetup)", 128, ref rcvBuffer);
 Console.WriteLine("Time Lapse for scan script configuration: {0:E}", rcvBuffer);

 InstQuery(netStream, "print(timeLapse)", 128, ref rcvBuffer);
 Console.WriteLine("Time Lapse for internal scan execution: {0:E}", rcvBuffer);

 Double testResults = 1000 / Convert.ToDouble(rcvBuffer);
 Console.WriteLine("Calculated Channels/Sec: {0:E}", testResults);

WWW.TEK.COM | 11

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 InstDisconnect(ref myClient, ref netStream);

 myStpWtch.Stop();

 // Get the elapsed time as a TimeSpan value.
 ts = myStpWtch.Elapsed;

 // Format and display the TimeSpan value.
 elapsedTime = String.Format("{0:00}:{1:00}:{2:00}:{3:00}.{4:000}",
 ts.Days, ts.Hours, ts.Minutes, ts.Seconds,
 ts.Milliseconds / 10);
 Console.WriteLine("Total Program Run Time " + elapsedTime + "\n");

 Console.WriteLine("Press any key to continue...");
 char k = Console.ReadKey().KeyChar;
 }

 static public int InstConnect(ref TcpClient myClient, ref NetworkStream netStream,
string ipAddress, int portNum, bool echoIdString, bool doReset, ref string strId)
 {
 int status = 0;
 try
 {
 myClient = new TcpClient(ipAddress, portNum);
 Console.WriteLine("Connected to instrument......");
 myClient.ReceiveTimeout = 20000;
 myClient.ReceiveBufferSize = 35565;
 netStream = myClient.GetStream();
 if (echoIdString)
 {
 InstQuery(netStream, "*IDN?", 128, ref strId);
 }
 if (doReset)
 {
 InstSend(netStream, "reset()");
 }
 }
 catch (Exception e)
 {
 status = -1;
 Console.WriteLine(e.Message);
 }
 finally
 {
 // Nothing to close
 }
 return status;
 }

 static public void InstDisconnect(ref TcpClient myClient, ref NetworkStream netStream)
 {
 netStream.Close();
 myClient.Close();
 }

 static public int InstSend(NetworkStream netStream, string cmdStr)
 {
 try
 {
 byte[] byteBuffer;
 if (echoCommands == true)
 {
 Console.WriteLine("{0}", cmdStr);
 }
 byteBuffer = Encoding.ASCII.GetBytes(cmdStr + "\r\n");
 netStream.Write(byteBuffer, 0, byteBuffer.Length);
 Array.Clear(byteBuffer, 0, byteBuffer.Length);
 return 0;

12 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 }
 catch (Exception e)
 {
 Console.WriteLine("{0}", e.Message);
 Console.WriteLine("{0}", e.ToString());
 return -9999;
 }

 }

 static public int InstRcv(NetworkStream netStream, int byteCount, ref string rcvStr)
 {
 try
 {
 byte[] rcvBytes;
 rcvBytes = new byte[byteCount];
 int bytesRcvd = netStream.Read(rcvBytes, 0, byteCount);
 rcvStr = Encoding.ASCII.GetString(rcvBytes, 0, bytesRcvd);
 Array.Clear(rcvBytes, 0, byteCount);
 return 0;
 }
 catch (Exception e)
 {
 Console.WriteLine("{0}", e.Message);
 return -9999;
 }
 }

 static public int InstRcv_FloatData(NetworkStream netStream, int chunkSize, ref
float[] fltData)
 {
 byte[] rcvBytes;
 rcvBytes = new byte[chunkSize * 4 + 3];
 int bytesRcvd = netStream.Read(rcvBytes, 0, rcvBytes.Length);
 // Need to convert to the byte array into single or do
 Buffer.BlockCopy(rcvBytes, 2, fltData, 0, fltData.Length * 4);
 Array.Clear(rcvBytes, 0, rcvBytes.Length);
 return 0;
 }

 static public int InstQuery(NetworkStream netStream, string cmdStr, int byteCount, ref
string rcvStr)
 {
 int status = 0;
 status = InstSend(netStream, cmdStr);
 if (status == 0)
 status = InstRcv(netStream, byteCount, ref rcvStr);
 return status;
 }

 static public int InstQuery_FloatData(NetworkStream netStream, string cmdStr, int
byteCount, ref float[] fltData)
 {
 int status = 0;
 status = InstSend(netStream, cmdStr);
 status = InstRcv_FloatData(netStream, byteCount, ref fltData);
 return 0;
 }
 }
}

WWW.TEK.COM | 13

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Appendix C: Using the DAQ6510 and 2280S-32-6 Test Script to Monitor
Voltage Decay
This TestScriptProcessor (TSP) code was created in TestScriptBuilder, Keithley's TSP development environment. The provided

code links the devices listed using TSP-Net with LAN connections. Note: The DAQ6510 cannot use LAN and USB connections

at the same time. This code executes a high-speed scan of seven channels of the card when the power supply output is

powered off to show the characteristics of the regulators when power is removed.

--[[GLOBAL VARS DEFINED HERE]]--
gInstPort = 5025
gPsuInstId = nil
gShuntVal = 0.1

--[[SYSTEM FUNCTIONS DEFINED HERE]]--
function DAQ_ChanConfig(voltChans, currChans, tempChan)
 --[[
 Configure the channel measurement settings to optimize for speed
 a. Setting a fixed range
 b. Disabling auto zero
 c. Disabling auto delay
 d. Turn line sync off
 e. Disable filtering and limits
 f. Decreasing the power line cycles (PLC) to the minimum
]]--

 reset()

 -- Configure channels measuring output voltage
 channel.setdmm(voltChans, dmm.ATTR_MEAS_FUNCTION, dmm.FUNC_DC_VOLTAGE)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_AUTO_DELAY, dmm.DELAY_OFF)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_RANGE, 10)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_RANGE_AUTO, dmm.OFF)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_AUTO_ZERO, dmm.OFF)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_DIGITS, dmm.DIGITS_4_5)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_NPLC, 0.0005)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_LINE_SYNC, dmm.OFF)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_LIMIT_ENABLE_1, dmm.OFF)
 channel.setdmm(voltChans, dmm.ATTR_MEAS_LIMIT_ENABLE_2, dmm.OFF)

 -- Configure channels measuring current by way of the shunt
 channel.setdmm(currChans, dmm.ATTR_MEAS_FUNCTION, dmm.FUNC_DC_VOLTAGE)
 channel.setdmm(currChans, dmm.ATTR_MEAS_AUTO_DELAY, dmm.DELAY_OFF)
 channel.setdmm(currChans, dmm.ATTR_MEAS_RANGE, .1)
 channel.setdmm(currChans, dmm.ATTR_MEAS_RANGE_AUTO, dmm.OFF)
 channel.setdmm(currChans, dmm.ATTR_MEAS_AUTO_ZERO, dmm.OFF)
 channel.setdmm(currChans, dmm.ATTR_MEAS_DIGITS, dmm.DIGITS_4_5)
 channel.setdmm(currChans, dmm.ATTR_MEAS_NPLC, 0.0005)
 channel.setdmm(currChans, dmm.ATTR_MEAS_LINE_SYNC, dmm.OFF)
 channel.setdmm(currChans, dmm.ATTR_MEAS_LIMIT_ENABLE_1, dmm.OFF)
 channel.setdmm(currChans, dmm.ATTR_MEAS_LIMIT_ENABLE_2, dmm.OFF)

 -- Configure channel measuring temperature
 channel.setdmm(tempChan, dmm.ATTR_MEAS_FUNCTION, dmm.FUNC_TEMPERATURE)
 channel.setdmm(tempChan, dmm.ATTR_MEAS_OPEN_DETECTOR, dmm.OFF)
 channel.setdmm(tempChan, dmm.ATTR_MEAS_AUTO_DELAY, dmm.DELAY_OFF)
 channel.setdmm(tempChan, dmm.ATTR_MEAS_AUTO_ZERO, dmm.OFF)
 channel.setdmm(tempChan, dmm.ATTR_MEAS_NPLC, 0.0005)
end

function DAQ_ScanConfig(scanchan, myScanCnt)
 --[[
 Establish the scan and buffer settings
]]--
 scan.scancount = myScanCnt
 scan.scaninterval = 0.0

14 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 scan.create(scanchan)

 defbuffer1.clear()
 format.data = format.ASCII

 -- Note that scan.stepcount should only be used after
 -- scan channels have been defined per scan.create()
 -- or scan.add(), otherwise this system attribute will
 -- be set to zero.
 defbuffer1.capacity = scan.scancount * scan.stepcount
end

function DAQ_Trig()
 --[[
 Trigger the start of the scan
]]--
 trigger.model.initiate()
end

function DAQ_ParseReadingBuffer(bufSize)
 --[[
 This utility function is used to break apart the default
 buffer where the collection of all readings is stored
 and separate them out into individual accessible buffers
 for each test point of interest.

 Note that for the buffers which hold current values, we
 not only extract, but also calculate based upon a known
 shunt resistance value (defined as a global above).
]]--

 -- Create a series of writable buffers to hold data from each point
 voltBuff1 = buffer.make(bufSize, buffer.STYLE_WRITABLE)
 voltBuff2 = buffer.make(bufSize, buffer.STYLE_WRITABLE)
 voltBuff3 = buffer.make(bufSize, buffer.STYLE_WRITABLE)
 currBuff1 = buffer.make(bufSize, buffer.STYLE_WRITABLE)
 currBuff2 = buffer.make(bufSize, buffer.STYLE_WRITABLE)
 currBuff3 = buffer.make(bufSize, buffer.STYLE_WRITABLE)
 tempBuff = buffer.make(bufSize, buffer.STYLE_WRITABLE)

 -- Establish the fill mode
 voltBuff1.fillmode = buffer.FILL_CONTINUOUS
 voltBuff2.fillmode = buffer.FILL_CONTINUOUS
 voltBuff3.fillmode = buffer.FILL_CONTINUOUS
 currBuff1.fillmode = buffer.FILL_CONTINUOUS
 currBuff2.fillmode = buffer.FILL_CONTINUOUS
 currBuff3.fillmode = buffer.FILL_CONTINUOUS
 tempBuff.fillmode = buffer.FILL_CONTINUOUS

 -- Define the buffer format
 buffer.write.format(voltBuff1, buffer.UNIT_VOLT, buffer.DIGITS_4_5)
 buffer.write.format(voltBuff2, buffer.UNIT_VOLT, buffer.DIGITS_4_5)
 buffer.write.format(voltBuff3, buffer.UNIT_VOLT, buffer.DIGITS_4_5)
 buffer.write.format(currBuff1, buffer.UNIT_AMP, buffer.DIGITS_4_5)
 buffer.write.format(currBuff2, buffer.UNIT_AMP, buffer.DIGITS_4_5)
 buffer.write.format(currBuff3, buffer.UNIT_AMP, buffer.DIGITS_4_5)
 buffer.write.format(tempBuff, buffer.UNIT_CELSIUS, buffer.DIGITS_4_5)

 -- Iterate through the main system buffer to extract specific
 -- readings per buffer.
 for i = 1, defbuffer1.n, 7 do
 -- Extract voltage values
 holder1 = defbuffer1.readings[i]
 buffer.write.reading(voltBuff1, holder1)

 holder2 = defbuffer1.readings[i+1]
 buffer.write.reading(voltBuff2, holder2)

WWW.TEK.COM | 15

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 holder3 = defbuffer1.readings[i+2]
 buffer.write.reading(voltBuff3, holder3)

 -- Extract current values per I = V/R
 holder4 = defbuffer1.readings[i+3]
 holder4 = holder4 / gShuntVal -- calculate I
 buffer.write.reading(currBuff1, holder4)

 holder5 = defbuffer1.readings[i+4]
 holder5 = holder5 / gShuntVal -- calculate I
 buffer.write.reading(currBuff2, holder5)

 holder6 = defbuffer1.readings[i+5]
 holder6 = holder6 / gShuntVal -- calculate I
 buffer.write.reading(currBuff3, holder6)

 -- Extract temperature values
 holder7 = defbuffer1.readings[i+6]
 buffer.write.reading(tempBuff, holder7)
 end
end

function PSU_Configure(ipAddress, vLevel, iLevel, outState)
 gPsuInstId = PowerSupply_Connect(ipAddress, gInstPort)
 PowerSupply_SetVoltage(gPsuInstId, vLevel)
 PowerSupply_SetCurrent(gPsuInstId, iLevel)
 PowerSupply_OutputState(gPsuInstId, outState)
 PowerSupply_SetDisplayText(gPsuInstId, "Start Test")
end

function PSU_Disable()
 PowerSupply_OutputState(gPsuInstId, 0)
 PowerSupply_SetDisplayText(gPsuInstId, "End Test")
 PowerSupply_Disconnect(gPsuInstId)
end

function PSU_Off()
 PowerSupply_OutputState(gPsuInstId, 0)
end

function PowerSupply_Connect(instAddr, remote_port)
 psuId = tspnet_init(instAddr, remote_port)
 return psuId
end

function PowerSupply_Disconnect(instId)
 tspnet_destroy(instId)
end

function PowerSupply_SetVoltage(instId, vLevel)
 sndBuffer = string.format("SOURce:VOLTage %f", vLevel)
 tspnet_send(instId, sndBuffer)
end

function PowerSupply_SetCurrent(instId, iLevel)
 sndBuffer = string.format("SOURce:CURRent %f", iLevel)
 tspnet_send(instId, sndBuffer)
end

function PowerSupply_OutputState(instId, myState)
 if myState == 0 then
 tspnet_send(instId, "OUTP OFF")
 else
 tspnet_send(instId, "OUTP ON")
 end
end

16 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

function PowerSupply_GetOutputState(instId)
 return tspnet_query(instId, "OUTP?")
end

function PowerSupply_SetDisplayText(instId, myText)
 sndBuffer = string.format("DISP:USER:TEXT \"%s\"", myText)
 tspnet_send(instId, sndBuffer)
end

-- Initialize connection between DAQ and controlled instrument
function tspnet_init(remote_ip, remote_port)
 tspnet.timeout = 5.0
 tspnet.reset()
 tspnet_instID = tspnet.connect(remote_ip, remote_port, "*RST\n")
 if tspnet_instID == nil then return nil end
 tspnet_ipaddress = remote_ip
 tspnet.termination(tspnet_instID, tspnet.TERM_LF)

 tspnet_send(tspnet_instID, "*RST")
 return tspnet_instID
end

-- Send command to controlled remote instrument
function tspnet_send(tspnet_instID, command)
 tspnet.execute(tspnet_instID, command)
end

-- Query data from the controlled instrument
function tspnet_query(tspnet_instID, command, timeout)
 timeout = timeout or 5.0 --Use default timeout of 5 secs if not specified
 tspnet.execute(tspnet_instID, command)
 timer.cleartime()

 while tspnet.readavailable(tspnet_instID) == 0 and timer.gettime() < timeout do
 delay(0.1)
 end
 return tspnet.read(tspnet_instID)
end

-- Terminate the connection between the master and subordinate instrument
function tspnet_destroy(tspnet_instID)
 if tspnet_instID ~= nil then
 tspnet.disconnect(tspnet_instID)
 tspnet_instID = nil
 end
end

print("Done...")

WWW.TEK.COM | 17

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Appendix D: Program File Used to Execute the Supply Monitoring Script
The following example code is used to call the functions defined in the script provided in Appendix C. Note how the program

makes calls to functions loaded on the DAQ6510 in order to configure and execute a scan, control the state of the power supply,

and extract specific buffered readings, which (in some cases) already have the necessary conversion calculations applied.

This code was generated using C# in Visual Studio 2017 and uses VISA COM driver references for communication between the

instrument and the controlling PC.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Threading;
using System.Diagnostics; // needed for stopwatch usage
using Ivi.Visa.Interop;

namespace Example_DAQ6510_Monitor_Energy_Storage_Module
{
 class Program
 {
 static Boolean echoCmd = true;

 static void Main(string[] args)
 {
 ResourceManager ioMgr = new ResourceManager();
 string[] resources = ioMgr.FindRsrc("?*");

 foreach (string n in resources)
 {
 Console.Write("{0}\n", n);
 }

 FormattedIO488 myInstr = new Ivi.Visa.Interop.FormattedIO488();
 //
/////////////
 myInstr.IO = (IMessage)ioMgr.Open("TCPIP0::192.168.1.165::inst0::INSTR", AccessMode.
NO_LOCK, 20000);
 // Instrument ID String examples...
 // LAN -> TCPIP0::134.63.71.209::inst0::INSTR
 // USB -> USB0::0x05E6::0x2450::01419962::INSTR
 // GPIB -> GPIB0::16::INSTR
 // Serial -> ASRL4::INSTR
 //
/////////////
 myInstr.IO.Clear();
 int myTO = myInstr.IO.Timeout;
 myInstr.IO.Timeout = 20000;
 myTO = myInstr.IO.Timeout;
 myInstr.IO.TerminationCharacterEnabled = true;
 myInstr.IO.TerminationCharacter = 0x0A;

 Stopwatch myStpWtch = new Stopwatch();
 Stopwatch CHANTIME = new Stopwatch();

 myStpWtch.Start();

 // Clear any script local to the DAQ6510 which has the name "loadfuncs"
 instrWrite(myInstr, "if loadfuncs ~= nil then script.delete('loadfuncs') end\n");
 // Build the new "loadfuncs" script by defining it then extractin all the functions
 // defined within the test script file local to this program executable.
 instrWrite(myInstr, "loadscript loadfuncs\n");
 string line;

// Load the script file from the path where the Program.cs file resides

18 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 System.IO.StreamReader file = new System.IO.StreamReader("..\\..\\
myTestFunctions.tsp");
 while ((line = file.ReadLine()) != null)
 {
 instrWrite(myInstr, line);
 }
 file.Close();
 instrWrite(myInstr, "endscript\n");
 // To ensure all the functions written to the instrument become active, we
 // call the "loadfuncs" script which holds the definitions.
 Console.WriteLine(instrQuery(myInstr, "loadfuncs()\n"));

 // Configure the DAQ6510 channel measure attributes DCV and Temperature.
 // Note that we will calculate current after the scan is complete.
 String sndBuffer = String.Format("DAQ_ChanConfig(\"{0}\", \"{1}\", \"{2}\")",
"101:103", "104:106", "110");
 instrWrite(myInstr, sndBuffer);

 // Configure the DAQ6510 scan attributes.
 Int16 scanCount = 1300;
 sndBuffer = String.Format("DAQ_ScanConfig(\"{0}\", {1})", "101:106,110", scanCount);
 instrWrite(myInstr, sndBuffer);

 // Tell the DAQ6510 to make a LAN connection to the power supply and configure
 // it to set the output on and supplying 9V at 1.5A.
 sndBuffer = String.Format("PSU_Configure(\'{0}\', {1}, {2}, {3})", "192.168.1.28",
9.0, 1.5, 1);
 instrWrite(myInstr, sndBuffer);

 //start timer for scan time
 CHANTIME.Start();

 // Trigger the scanning to start.
 instrWrite(myInstr, "DAQ_Trig()");

 // Turn the power supply output off.
 instrWrite(myInstr, "PSU_Off()");

 // Loop until the scan has successfully completed.
 CheckScanProgress(myInstr);

 // Scanning timer ending
 CHANTIME.Stop();

 // Ensure that the supply is turned off and the socket connection
 // is closed.
 instrWrite(myInstr, "PSU_Disable()");

 // Split the main buffer (defbufer1) into separate buffer items where the
 // individual channel measurments are warehoused.
 sndBuffer = String.Format("DAQ_ParseReadingBuffer({0})", scanCount);
 instrWrite(myInstr, sndBuffer);

 // Extract each buffer's contents and make them local to the controlling PC. Note
 // that the values for the current channels will hold the current values calculated
 // local to the DAQ6510.
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, voltBuff1.n, voltBuff1)"));
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, voltBuff2.n, voltBuff2)"));
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, voltBuff3.n, voltBuff3)"));
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, currBuff1.n, currBuff1)"));
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, currBuff2.n, currBuff2)"));
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, currBuff3.n, currBuff3)"));
 Console.WriteLine(instrQuery(myInstr, "printbuffer(1, tempBuff.n, tempBuff)"));

 // Output block for the time it took to run just the scan (not including the
 // output of the buffer)
 TimeSpan dt = CHANTIME.Elapsed;

WWW.TEK.COM | 19

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

 double dts = dt.Seconds;
 double dtms = dt.Milliseconds;
 dtms = dtms / 1000;
 double totalt = dts + dtms;
 Console.WriteLine("Scan time elapsed: " + totalt + " Second");

 double chanpersec = (7 * 1300) / totalt; // number of channels times number
of scans,
 // then divide by scan time
 Console.WriteLine("Channels scanned per second: " + chanpersec);

 myInstr.IO.Close();

 myStpWtch.Stop();

 // Get the elapsed time as a TimeSpan value.
 TimeSpan ts = myStpWtch.Elapsed;

 // Format and display the TimeSpan value.
 string elapsedTime = String.Format("{0:00}:{1:00}:{2:00}:{3:00}.{4:000}",
 ts.Days, ts.Hours, ts.Minutes, ts.Seconds,
 ts.Milliseconds / 10);
 Console.WriteLine("Total Test Run Time " + elapsedTime);

 Console.WriteLine("Press any key to continue...");
 char k = Console.ReadKey().KeyChar;
 }

 static void instrWrite(FormattedIO488 instr, string cmd)
 {
 if (echoCmd == true)
 {
 Console.WriteLine("{0}", cmd);
 }
 instr.WriteString(cmd + "\n");
 return;
 }

 static string instrQuery(FormattedIO488 instr, string cmd)
 {
 instr.WriteString(cmd);
 return instr.ReadString();
 }

 static void CheckScanProgress(FormattedIO488 instr)
 {
 string trgrcheck = "";
 bool triggercheck = false;
 do
 {
 trgrcheck = instrQuery(instr, "print(scan.state())");
 //Console.WriteLine(trgrcheck); //uncomment to see the current trigger state
 if (trgrcheck.Contains("SUCCESS"))
 {
 triggercheck = true;
 }
 } while (triggercheck == false);
 return;
 }
 }
}

20 | WWW.TEK.COM

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

WWW.TEK.COM | 21

Three Reasons to Consider Solid-State Switching in Your Data Acquisition System WHITE PAPER

Contact Information

 Australia* 1 800 709 465

Austria 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People's Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number.

If not accessible, call: +41 52 675 3777

Rev. 090617

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.

040119 SBG 1KW-61547-0

tek.com
http://www.tek.com
http://www.tek.com/keithley

